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Thermal Conductivity of Multicomponent Polyatomic 
Dilute Gas Mixtures 

M. Schreiber,-" V. Vesovic, 3 and W. A. Wakeham 4 5 

A new expression for the thermal conductivity of an N-component polyatomic 
gas mixture in the dilute-gas limit has been derived, based on the Thijsse 
approximation. The restdts are presented in terms of experimentally accessible 
quantities to allow for easier calculation of the thermal conductivity and easier 
interpretation of the experimentally available data. The resulting expressions are 
much simpler than other Ibrmulae hitherto available. An additional new expres- 
sion Ibr the thermal conductivity of an N-component polyatomic gas mixture 
has been derived by replacing the effective cross-section by their spherical limits. 
These results are cast in a form which is analogous with, and no more com- 
plicated than, the corresponding expressions tbr purely monatomic mixtures. 
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1. I N T R O D U C T I O N  

The development of the kinetic-theory expressions for the thermal conduc- 
tivity of dilute gases and their mixtures has a long and interesting history. 
At the beginning of this century, the foundations of the kinetic theory were 
laid and the expressions for the thermal conductivity of N-component 
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monatomic mixtures were derived [ 1 ]. It took another 40 years for the for- 
real kinetic theory of polyatomic gases to be developed [2].  The difficulties 
were essentially twofold: first, how to incorporate the internal modes of 
molecules into the fi'amework and allow for the transfer of energy between 
translational and internal (rotational and vibrational) mode, second, how 
to calculate the dynamics of the molecular collisions taking place on the 
nonspherical intermolecular potential surface. One of the more successful 
approaches [2, 3 ] was a semiclassical treatment of Wang-Chang Uhlenbeck 
and de Boer (WCUB), where the solution of the generalized Boltzmann 
equation tbr a nonuniform dilute polyatomic gas is obtained by using two 
expansion vectors, one proportional to the translational energy and other 
proportional to the internal energy. The WCUB solution resulted in a set 
of expressions relating the transport properties of pure gases to the effective 
cross sections, which contain all the dynamic information about the manner 
in which binary molecular collisions influence appropriate transport proper- 
ties. One of the criticisms of the WCUB treatment is that it is unable to 
account for the polarisation of angular naomentum which occurs in poly- 
atomic gases. This phenomenon [2]  is of interest only if one is concerned 
with the influence of magnetic and electrical fields on transport properties. 
For the traditional transport properties, such as thermal conductivity, 
the WCUB equation gives the same results as the more exact Waldman-  
Snider equation [2]  in the semiclassical limit. The advantage of the 
WCUB formalism is that it is rather straightforward to generalize the 
results to include all internal energy modes, rather than just rotational. 
This is important because the vibrational contribution to the thermal con- 
ductivity is significant and its neglect can lead to large errors [4] .  

In the early sixties Monchick et al. [5]  extended the WCUB formalism 
to mixtures of polyatomic gases. The resulting formal expressions were 
sufficiently complicated and lengthy, involving a large number of cross 
sections, that it was not possible to make use of them in practical applica- 
tions. In pioneering work Mason and his collaborators showed [6 -8] ,  
based on physical arguments, that a number of cross sections entering 
expressions for the transport properties are of a low relative magnitude and 
can be neglected, while the remaining cross sections can be related, at least 
in principle, to experimentally measured properties. Although for the ther- 
mal conductivity of the polyatomic mixtures the expressions were still 
lengthy [8] ,  this work laid the foundations for all subsequent attempts to 
calculate the thermal conductivity or to analyze experimental data. As 
such, it has had a lasting influence on the development of thermal conduc- 
tivity of dilute gas mixtures. 

In the late seventies Thijsse et al. [9]  showed that it is possible to 
obtain much simpler expressions for the thermal conductivity of pure gases. 
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First, they showed that it is possible to obtain the expression for the 
thermal conductivity equivalent to the WCUB result if different expansion 
vectors are used. The essence of the proposal [2, 9] was that, in the solu- 
tion of the generalized Boltzmann equation for a nonuniform, dilute 
polyatomic gas, the expansion vectors chosen for the solution should con- 
sist of one proportional to the total heat flux (translational and internal) 
and one proportional to the difference of the translational and internal heat 
fluxes. It was then showed that a greatly simplified approximate expression 
would be obtained if only one expansion vector was used, namely, the one 
proportional to the total energy flux. A number of numerical tests carried 
out [4, 10] for pure gases indicated that the results obtained with Thijsse's 
approximation are very accurate. Subsequently, Ross et al. [11] derived 
tbrmal expressions for the thermal conductivity of a dilute, multicompo- 
nent polyatomic gas mixture based on Thijsse's total-energy flux approach. 
Recently [12] the formal expressions were examined for the simplest 
polyatomic mixture, namely, an atom-molecule system. The numerical 
tests, based on classical trajectory studies, indicated again that the Thijsse 
approximation is very accurate and leads to a simple final expression for 
the thermal conductivity of an atom-molecule system. Furthermore, it has 
been shown [12] that such an expression can be cast in the form 
analogous to that for the thermal conductivity of a monatomic mixture. 
Although, useful in its own right, the derived expressions contained a 
number of cross sections that were not readily available, which made 
predictions difficult lbr practical purposes. Hence, a further approximation 
was made [ 13] based on replacing a number of cross sections by their 
equivalent spherical limit. The numerical tests, using rigorous theoretical 
results, again indicated that such an approximation is justifiable, to within 
+ 1%, for a number of systems studied. Finally, the resulting expressions 
for the thermal conductivity of an atom-molecule mixture in the spherical 
limit were tested against the available, accurate experimental thermal con- 
ductivity data [14].  The results were very encouraging as these rather 
simple expressions [ 14] predicted most of the data to within + 2 % .  

In order to confirm the more general applicability of the formulation 
that successfully predicted the thermal conductivity of atom-molecule 
mixtures, it is necessary to extend the theoretical development to encom- 
pass multicomponent polyatomic mixtures. The present paper reports on 
the results of such theoretical investigations and proposes two formulations 
of the thermal conductivity of N-component mixtures; the first based only 
on Thijsse approximation and the second based on replacing the cross 
sections of the former formulation by their spherical limit. 
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2. THEORY 

2.1. The Formal Results of the Kinetic Theory 

The thermal conductivity of a dilute N-component polyatomic gas 
mixture, 2~, at temperature, T, can be expressed in the following form 
[11]: 

5/,..~, T}-" Y'. (S),;:/' x, ,x , , . (1  + r~)(1 + r~.) 
2 ' = 7. v ,/ v / ~ , l m , /  ( 1 ) 

where (S),~,~! denotes the qq'  element of the inverse of N x N square matrix 
S. The matrix S is given by 

S = S u F -  SrI'(S m~) ISm: (21 

where the S w are N x N matrices whose elements are given by 

[ S V ! = ( l + r ~ ) l - ~ ( l + r , ,  ' ) I - ' , M  . x , , x , / c , , , f ,~  1 0 q / , i , /  

~ xq) l 
~, = ,, 0 Y q ,,, 

(3) 

where 

r,  = ( 2 q , , , , , ~  ~ 2 
\ 5kl~ / (4) 

and 

_ 8 T ( m q + m , / )  - 

C qq, = n t  ql1~l q ' 
(5) 

In these equations, q, q', and/~ denote the molecular species, xq is the mole 
fraction of species q, m its molecular mass, q.,. q its internal, isochoric heat 
capacity, and kl~ the Boltzmann constant, while 6q,,, represents the Kronecker 

0 .V q l 0 delta. The effective cross sections, ~(~, . r [ q,),~,/ and ~( ~.~ .vr ] ,,"),~,~,, are 
those proposed originally by Thijsse et al. [2, 9] and generalized for 
mixtures [11 ]. The above result, Eqs. (1)-(5), is equivalent to, although 
much simpler, than, the traditional first-order expression for the thermal 
conductivity of a multicomponent gas mixture [ 15 ] which was first derived 
by Mason and his collaborators [ 5 ]. 

It is useful to cast Eq. (1) in a determinant lbrm, in order to facilitate 
an easier comparison with the traditional expression of the thermal con- 
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ductivity of monatomic mixture. If the elements of matrix S are replaced by 
the elements of matrix L, 

5 ~T(1 ~ 1 + "  s,,,,.=~kr~ +r;')//,~,,"7") Ll,',,! (6)  

then the expression for the thermal conductivity, Eq. (1), can be cast into 
the following form: 

2' =~ ~ (L),~,,!XqX,,, xVadj(L)x (7) 
q ,r det(L) 

where x is a 1 • N column vector of mole fractions, x, x T is its transpose, 
and adj(L) is the adjoint of matrix L. The numerator of the right-hand side 
of Eq. (7) can be expressed in the determinant form and one ends up with 
a simple expression for the thermal conductivity of the N-component 
polyatomic mixture, 

L~lll~ LIII xl0' I 'Llllll 
In [ (  ! ) 

�9 �9 �9 ~ Itt 

) ~ ' = -  tr L~l~ : " (8) 
- , , '  . . . . .  ILl ' , '  L'",., 

] X 1 "Yn 

This expression is analogous to the one for the mixture of monatomic 
species [ 15 ]. Here we have used superscript 1 on the elements of matrix L 
to indicate that Eq. (8) is a full first-order result and no further approxima- 
tions have been made in its derivation. 

2.2. The Thijsse Approximation 

The full formal first-order results presented above have limited practi- 
cal use, since a large number of different effective cross sections that enter 
the expressions render any calculations or analysis of experimental thermal 
conductivity data very difficult. Nevertheless, it has been shown [8] ,  based 
on physical arguments, that the contributions from a number of effective 
cross sections are likely to be very small and can be safely neglected. 
In order to proceed with the elimination of the relevant effective cross sec- 
tions, it is necessary to evoke approximations which both simplify the ther- 
mal conductivity expression and preserve its accuracy. In the case of pure 
polyatomic gases [4, 9] and atom-molecule mixtures [12],  it has been 
shown that remarkably simple and accurate formulas can be derived if 
Thijsse's approximation is made. The Thijsse approximation [2, 9] is 
based on the simple physical hypothesis that for polyatomic molecules the 

~4~1 L~ 4--4 
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transfer of the total energy (translational and internal) during collisions is 
a primary ['actor in determining the thermal conductivity. Thus, any expan- 
sion vectors chosen for the solution o1 the generalized Boltzmann equation 
should be based on the total energy, rather than depending separately 
upon the translational and inten~al energy [2].  

In the context of the thermal conductivity of polyatomic gas mixtures. 
the Thijsse approximation is equivalent to neglecting the second term in 
the expression for matrix S. Eq. (2) [ 12]. and hence replacing Eq. (2) by 

S = S/:/" (9) 

If the elements of matrix S r", Eq. (3 I, are then substituted into Eq. (6), the 
following result is obtained for the thermal conductivity: 

L.t] L.l,, x.i L l l  "" L i 

" \:, . (10)  
II  

x/ .  = -  L,,, L .... . , k,,i .. L',,,, 
o -\" I .V,, 

Here we use the symbol 2/i. in line with our earlier notation [12],  to 
denote the thermal conductivity based on the Thijsse approximation. The 
determinant elements are given by 

22 e-; ;x/7~'r'""' ~.(1 0 E q,/ . q:/=q' (11) 
L ' l ' /=5k .T( l  +r,:,,TT,l +re,ll'zx'/v':'(='/'/ 1 0 E q /,m. 

") it1, I .\.2 + _ ~ x/,x,,r ~.( 10E I q),., ( 12 ) 
L""=.;.,7 5k;,T(1 +"~1/,=,1 

where ";',/ is the thermal conductivity of the pure component q, which. 
within the Thijsse approximation, is given by [2. 4. 9] 

5k~,T( 1 +r~) 1 
(13) 

2 , : -  2 m,lc,/q '~.(10E[ q),.i 

For pure gases [4. 7] and for atom diatom mixtures [ 12], the effec- 
tive cross section entering the thermal conductivity expressions can be 
calculated directly from the intermolecular potential. Thus, one can 
estimate the accuracy of the Thijsse approximation by evaluating the ther- 
mal conductivity both in the first-order form, 2", and within the Thijsse 
approximation, 2/i.. Such calculations are, at present, computationally 
prohibitively expensive for even binary diatomic mixtures and it is there- 
fore not possible to make comparisons between predictions of Eqs. 
(10)-112) and Eqs. (1)-(5) based on kinetic theory calculations. 
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In order to estimate the accuracy of Eqs. ( 10t-(12) for predicting the 
thermal conductivity of polyatomic mixtures, one has to compare their 
predictions with the available experimental data. To facilitate such a com- 
parison and also to have a more practical set of equations, it is necessary 
to eliminate from Eqs. (11 J-(121 the effective cross sections in favor of 
measurable or more readily available quantities [8, 12, 13]. 

2.3. The Practical Formulation 

The kinetic-theory expressions for the effective cross sections for 
molecule-molecule interaction have been derived by K6hler and 't Holt 
[ 16]. They have limited their derivation to rigid rotors only and have not 
considered vibrational energy transfer. Recent calculations have shown 
[4, 7, 13] that neglect of vibrational degrees of freedom can lead to large 
discrepancies between calculated and experimentally available thermal con- 
ductivity. We have thus generalized the results of Ref 16 to include vibra- 
tional degrees of fi'eedom, for the effective cross sections where the angular 
momentum polarization is zero, which covers all the cross sections of inter- 
est here. Such cross sections are derivable flom the semi classical WCUB 
kinetic equation, which allows for a relatively straightforward generaliza- 
tion of results to include all internal degrees of freedom. Thus, it is possible 
to replace the rotational energy, e,,,, ,  by the total internal energy, era,, in 
all the effective cross sections of interest without loss of rigor [ 12]. 

Following this generalization, it is relatively straightforward, although 
algebraically lengthy, to relate the Thijsse cross sections, Eqs. (l l} and 
(12), to the traditional ones given in Ref 16 and, by examining each term 
m turn, to express it m terms of experimentally accessible quantities. For 
the sake of brevity we present here only the final results, and the details of 
the derivations are given in Rel: 17. 

The elements L,/,I. of the determinant that enter the expression for the 
thermal conductivity, Eq. 110), are then given as 

"u "u q'u 

L, , , ,=#+  y 2(1 * Aq It #, :  a'r"  ~ 

x ).a, +15 v ; -  _:~)'4B*,, ./. +4,'~. .v~,A*, + ~ , ' ; ,  D . ,  
- -  q . / t  

") d '/I' + 10,'~, K.*/,- - ,'~ ,'~(5 - 3/,'~. ) 
�9 7"/" " ~ ' " Z m t  q .  t ~  

10 ~ 2 A,,*, 10 ] 
+ - - " 7 ,  ~ t- ( r , ,+ , ' , , )  2 v~(Sv~,-3) A,,*, J (14) 

�9 q - -  ~ ' " r " / l o t  int. ,lit 7["  Z i r  d i t  . q 
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5 . .  5 5 D,I q. _A,I,I, 
x - - - - 3 B * . - 4 A * . + - -  + - -  * 

,,, ,,,, Yq' R,,r y~ K,,,,, + 4 ~- ~- + " )',,Y,/Dai(,,,.,,,,' zO'~ )'~. 

r ~ ( 5 v ~ - l )  r ~ . ( 5 ) ' i . - 1 ) ( r , , + r , ,  . . ,  (15) 

x Z~.,,77r + Zi.,,r 3Z,,,i,,,.,, ,, 

where 3',r is the mass ratio of species q, given by 

yq = II1'/ (16) 
( I l l ,  / + m t, ) 

and )',,,1' is the i n t e rac t ion  thermal conductivity [ 12 15]. 
The quantities A* * ~'* * ,M', B,11, K,r and K,I., ~ are the ratios of effective cross 

sections, D,t,/ is the binary mass-difl'usion coefficient, D~,,t,l.q,. D~,,r q.q, and 
D,,,~ ~,,, ,/,1' are dill"erent measures of diffusion of internal energy, and Zmt ,i. ,1', 
Z , , ,  r and Z,,,,,,,.,~,/, are different measures of the relaxation of internal 
energy. For completeness, the definitions of all the above quantities in 
terms of K6hler and 't Hooft bracket integrals [2, 16] are given in the 
Appendix. 

The ratios of the efl'ective cross-sections A,I* I, and B,I* ,, are analogous to 
those for monatomic gases. In the limit of zero internal energy or spherical 
intermolecular potential they tend to the well-known monatonaic expres- 
sions [15].  Although not directly experimentally accessible, these two 
ratios, which are very weakly temperature dependent, can be obtained from 
the available corresponding-states correlations [ 15, 18 ]. The other ratios of 
elt"ective cross section, K*.,/,/and Kr  I* do not have monatomic analogous and 
are nonzero only for polyatomic molecules. All the calculations, based on 
a tom-diatom systems [4, 19], performed so far indicate that they are 
vanishingly small and are unlikely to influence the overall thermal conduc- 
tivity to any great extent. 

The quantities D,,r q, and Dm,r  are the diffusion coefficients of 
internal energy of molecule q in species q' and internal energy of molecule 
q' in species q, respectively. Their definition is equivalent to the original 
definition proposed by Monchick et al. [8] .  The definition implicitly 
assumes that only the internal energy of a molecule that diffuses changes in 
a collision. Although this is true in atom-molecule encounters, there is a 
possibility that when two molecules collide the internal energy of both will 
change. Hence, for polyatomic gas mixtures there is a need for an addi- 
tional diffusion coefficient that can measure the difl'usion of the total inter- 
nal energy change. Such, a diffusion coefficient is labeled D,,,, ~,,,.,11 and its 
definition is given in the Appendix. This coefficient does not enter the 
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expressions tbr the thermal conductivity, Eqs. ( 11 ) and (12), explicitly but, 
rather, through D,~,~,,,,,~,,,, which is defined as 

2 2 1.2 1 r~ + r/,  r,/ ,1, 
m 

B 

D,.lit +int. q,t'  Dr, tint qq'  Dint q. ,/' Dint q'.  ,i 

(17) 

For atoms and in the limit of spherical intermolecular potential all three 
internal energy diffusion coefficients, D~,,,,~.,~., D~,,,,,,~, and D,,~, ~,,~.,~,~,, tend 
to the value of the mass difl'usion coefficient. Dq,,,. Consequently, the 
reciprocal of D,~,.~ ..... ~,~, tends to zero, Eq.(17). At present there are no 
calculations of Dj~t-~,,,.,,,~, so it is difficult to estimate its influence on the 
thermal conductivity of polyatomic mixtures, but it is worth pointing out 
that for atom-molecule mixtures, there are no terms involving Dj~f~,,,.,~,~., 
since if one of the species is an atom, the reciprocal of Dj,.~,,,.,,q, vanishes, 
Eq. (17t. Although, the three nonvanishing internal diffusion coefficients 
are, in principle, accessible to direct measurements, no measurements have 
been performed to date. even for atom-molecule mixtures. In fact the 
perceived difficulties associated with experimentally identifying the three 
separate contributions to the diffusion of internal energy might render the 
experimental identification impossible. It is thus essential to perform some 
calculations of the appropriate effective cross section using realistic inter- 
molecular potential surfaces in order to estimate their values relative to the 
mass diffusion coefficient. 

The quantities Z~,, q.,/ and Z~,,,~..,~ are the collision numbers for the 
relaxation of internal energy of molecule q in species q' and internal energy 
of molecule q' in species q, respectively [2. 17, 19]. The quantity Z~o, ~,,~.,~,~, 
is the collision number for the relaxation of the combined internal energy 
of molecules q and q' and its definition in terms of bracket integrals [2. 16] 
and the internal energy exchanged is given in the Appendix. In the spheri- 
cal limit all three collision numbers tend to infinity, because for the spheri- 
cal potentials there is no possibility of internal energy exchange, and hence 
it would, in principle, take an infinite number of collisions to relax the 
internal energy of a molecule. The collision numbers enter the expressions 
for the thermal conductivity, Eqs. (11) and (12), as reciprocals, so the 
larger the collision number, the smaller its influence is on the overall ther- 
mal conductivity. For atom (q'l-molecule (q) collisions the total collision 
number, Z,,,, ~,,,. q,~,, is equivalent to the collision number for the relaxation 
of the internal energy of the molecule, Z~,~ ,~.,/. The experimental identifica- 
tion of all three separate collision numbers might prove difficult and the 
computational approach directly from the interraolecular potential might 
be a more feasible way of estimating the relative sizes of different collision 

numbers. 
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It is worth pointing out that Eqs. (14) and (15) can be t\wther sim- 
plified if one makes the plausible assulnption that complex collisions are 
rare and can be neglected, in which case the term D,,//Dj~,.m, .,~,/in Eq. (15) 
will vanish and Z,,. ~,., ,~,/will be expressible in terms of the other two colli- 
sion numbers. Although this assumption is usually made in phenomenol- 
ogical theories of relaxation of gases and has also been made by Mason 
and his collaborators [8] in simplifying the traditional WCUB expressions. 
we are reluctant to make it at present until the computational evaluation 
of the relevant cross sections justifies its use. 

The general expressions for the thermal conductivity of N-component 
polyatomic mixtures are given in Eqs. (10) and (12). For binary mixtures. 
where one of the species is an atom, the lbrmulation reduces to the one 
given in Ref. 4, while for N-component monatomic mixture it reduces to 
the traditional expressions given in Ref 15. 

2.4. The Spherical Approximation 

Presently, the use of Eqs. ( 10)-(12) to calculate the thernaal conduc- 
tivity is hampered by a lack of available experimental intbrmation on a 
number of quantities entering Eqs. ( 10)-( 12 ). Furthermore, no calculations 
of the effective cross sections tbr unlike molecule molecule interactions 
directly from the intermolecular potential are yet available. Very little is 
known about the relative sizes of different internal energy diffusion coef- 
ficients and collision nmnbers, and thus it is not possible to estimate the 
contribution of different terms to the overall thermal conductivity. In lhct. 
most of the information available relates to the simplest polyatomic system, 
namely, atom~liatom. Although molecule-molecule systems require rather 
more information, study of the behavior of atom-molecule systems can give 
us some general indications of what further assumptions and simplifications 
can be made. Recent work [ 13, 14] has shown that the thermal conductivity 
of the binary atom-molecule mixture can be predicated to within a few per- 
cent by making use of thermal-conductivity expressions where the ratios of 
effective cross sections have been replaced by their spherical limits. 

For completeness we present here the expressions for the thermal con- 
ductivity of an N-component polyatomic gas mixture in the spherical limit. 
The elements, L,~,/, of the determinant that enter the expression for the 
thermal conductivity, Eq. (10), are then given as 

_"~ ~. .,',,.,',, [25 y~+_7_y,_3),,B,, , 1 5 4  , 4 ,  
L,/,, = ),,__ + 2(1 +r~) :  A* ), 

I t ~: (I q / t  ~(llt L4 - 

5 ,.~] (18) + 43'~)'~,A*, + ~ 
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~ ~ - 3B, ,* / -  4A*,/ 
L,,,,.= _)A* ,i,, , ,, + r ; ) ( l + r ; , )  (19) 

Evaluation of the thermal conductivity in this approximation now 
requires data on the thermal conductivity and the internal heat capacity of 
pure components, which are readily available, the interaction thermal 
conductivity, z,,,/." and two effective cross section ratios, A,.,*, and B,./,* all 
of which can be calculated from corresponding-states correlations [5, 18]. 
Such calculations are currently being perlbrmed [br a number of 
polyatomic gas mixtures in order to compare the predicted thermal con- 
ductivity with the experimentally available one. Only then shall we know 
if the general formulation given by Eqs.(lO), (18). and (19). is accurate 
enough for the prediction of the thermal conductivity of all polyatomic 
mixtures. 

3. C ONC LUS I ON 

A new expression for the thermal conductivity of an N-component 
polyatomic gas mixture in a dilute-gas limit has been derived. The derived 
formulation is based on the Thijsse approximation and the final expres- 
sions, Eqs. (10)-(12}, turn out to be much simpler than those presently 
available. Future numerical tests have to be performed in order to ascertain 
that the present formulation is as accurate as the traditional ones, but 
judging by the results for pure gases and binary atom-molecule mixtures, 
all indications are that it is. 

Furthermore, the derived expressions were rewritten in terms of 
experimentally accessible quantities to allow for easier calculation of the 
thermal conductivity and easier interpretation of the experimentally 
available data. Presently, there is insufficient information on a number of 
quantities entering the expressions for the thermal conductivity to make 
this lbrmulation readily usable. There is therefore a need for more com- 
putational studies and experimental data on unlike molecule molecule 
interactions. 

Finally, a new expression for the thermal conductivity of an N-compo- 
nent polyatomic gas mixture in a dilute-gas limit has been derived by 
replacing the effective cross sections by their spherical limit, Eqs. (10), (18), 
and (19). This formulation is rather simple and all the input quantities are 
readily available. Presently, the calculations are being performed for a 
number of polyatomic mixtures for which accurate experimental data are 
available in order to ascertain the accuracy of the proposed formulae. 
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A P P E N D I X  

This appendix contains the definitions of  the quantities appearing in 
Eqs. (14) and (15) in terms of  K6hler  and 't Hol t  bracket  integrals [16] ,  
symbolized by {...}. 

A*.  - 5.1'~ .=~2~,;,; 
q,i 3v~.. ~TTi,.~, A1 ) 

* 53'~ ,,3 ,~ _ 
( ,  , / " - ' , /q  " " )  A2 ) Bq,l' = ~ "~ ( 11 o y r  q 

, _ _ 3,~ ", , /  A 3  ) Kqq. = ~ i ~  
q 

-) ,~12~ 

-....2_ ""'/  A 4  ) 
Z i n t  q" q' - -  ~1,'2, ',~C..l 

2 ~ 2 ,  
';'; A5 ) Z t o t  int. qq' ~" 4 

7"gJ'q, "~ ,-tot 

D,/,/. _ 23,~ ~],q 
D m t  q. q' ~-'q 

D qq, 

Dto t  int. qq' 

A6) 

+~"/+ tot - -  -= 2y,,.Vq. ,~tl~ (A7) 
I1 

where the effective cross sections are given by 

4 ,=,1,__ ,:y~.{ ~,2 ~,,e ~ ,  ~3,,  ~q,,.( + -- 277'cos Z}} (A8) 

,4 
4 4 . . . .  ) ,/' =c_~ (A9) ~ , 2  ~ _ ._~ v ,,. l a ,,, ,( 37_ 7 2( 1 - cosez) + ( A e  ) 2 ) } = 7, a '=,,,,' 

qq - .] q 

~ , , q ~  yl; .{ O'qq,( ),6 -}- ) / 6  - -  2 ) ,3) /3  COS X ) } ---- 3 "---2 ~ , , , /  ( A 1 0 )  
) ,/ 

4 ~ 7 4 7"* 3 7 / _  ' ,~ , , , , -~-y; , , {a , , , , . (  + - 7 7 ' ( T 2 + 7 ' Z ) c o s x ) }  - 7 ~ , , , /  ( a l l )  

8 ~ c q  ~ 2 t 2 __ fl t - -  - ~ ) , / { a , , q . ( )  ()  2.5)[) ( e , , - g q )  y ( e q - - g , , ) c o s z ] ) }  (AI2)  

9 1  
(A13) 
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2 1 
" ~  '" '  - 5 (% + %, )~- { a'~'~'('~e)-I ( A 1 4 )  

4 .1'~. = _ _~ _~ 
'~/"/---- 15 r= {a,/,/'(7' ( e , l - e , / )  +7 ( e , l - g , i ) -  

q 

-- 2~')" cos Z(e , / -  g,/)(e'q - gq))} (AI5)  

_ 4 )',lYq' I " - "  

, ~_ ) - t a , M , ( 7 ' - ( A e ) - + ) , ' 2 ( d Y ) z - 2 ) ' ) , ' c o s z d g A g ' ) }  (AI6)  
~ / ' " "  = 15 (r~ +r,/, 

and 

At = e',~ + e 'q . -  e , , -  eq. (A17) 

Ag=aq + a,r  g, l-  g q. ( A 1 8 )  

Ag' = e',~ + e'q. - g,~ - g,~. ( A 19 ) 

where ~ and )' are the reduced internal and kinetic energy, respectively, aqq. 
is the differential cross section, Z is the deflection angle, a prime indicates 
the final state, and an overbar indicates the kinetic average. For more 
details the reader is referred to Refs. 16 and 17. 
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